Infrastructure

ASSM tangle

Here’s a follow-on from Tuesday’s (serious) note about a bug in 12.1.0.2 that introduces random slowdown on large-scale inserts. This threat in this note, while truthful and potentially a nuisance, is much less likely to become visible because it depends on you doing something that you probably shouldn’t be doing.

There have always been problems with ASSM and large-scale deletes – when should Oracle mark a block as having free space on deletion: if your session does it immediately then other sessions will start trying to use the free space that isn’t really there until you commit; if your session doesn’t do it immediately when can it happen, since you won’t want it done on commit – but that means the segment could “lose” a lot of free space if something doesn’t come along in a timely fashion and tidy up.

ASSM argh!

Here’s a problem with ASSM that used to exist in older versions of Oracle had disappeared by 11.2.0.4 and then re-appeared in 12.1.0.2 – disappearing again by 12.2.0.1. It showed up on MoS a few days ago under the heading: “Insert is running long with more waits on db file sequential read”.

nvarchar2

Here’s an odd little quirk that appeared when I was playing around with default values just recently. I think it’s one I’ve seen before, I may even have written about it many years ago but I can’t find any reference to it at present. Let’s start with a script that I’ll run on 12.2.0.1 (the effect does appear on earlier versions):

Rebuilding Indexes

One of the special events that can make it necessary to rebuild an index is the case of the “massive DML”, typically a bulk delete that purges old data from a table. You may even find cases where it’s a good idea to mark a couple of your indexes as unusable before doing a massive delete and then rebuild them after the delete.

Despite the fact that a massive delete is an obvious special case it’s still not necessary in many cases to worry about a rebuild afterwards because the space made free by the delete will be smoothly reused over time with very little variation in performance. There is, however, one particular feature that increases the probability of a rebuild becoming necessary – global (or globally partitioned) indexes on partitioned tables. The problem (and the absence of problem in non-partitioned tables) is in the nature of the rowid.

Redo OP Codes:

This posting was prompted by a tweet from Kamil Stawiarski in response to a question about how he’d discovered the meaning of Redo Op Codes 5.1 and 11.6 – and credited me and Julian Dyke with “the hardest part”.

Over the years I’ve accumulated (from Julian Dyke, or odd MoS notes, etc.) and let dribble out the occasional interpretation of a few op codes – typically in response to a question on the OTN database forum or the Oracle-L listserver, and sometimes as a throwaway comment in a blog post, but I’ve never published the full set of codes that I’ve acquired (or guessed) to date.

Fast Now, Fast Later

The following is the text of an article I published in the UKOUG magazine several years ago (2010), but I came across it recently while writing up some notes for a presentation and thought it would be worth repeating here.

Fast Now, Fast Later

The title of this piece came from a presentation by Cary Millsap and captures an important point about trouble-shooting as a very memorable aphorism. Your solution to a problem may look good for you right now but is it a solution that will still be appropriate when the database has grown in volume and has more users.

I was actually prompted to write this article by a question on the OTN database forum that demonstrated the need for the basic combination of problem solving and forward planning. Someone had a problem with a fairly sudden change in performance of his system from November to December, and he had some samples from trace files and Statspack of a particular query that demonstrated the problem.

255 Again!

There are so many things that can go wrong when you start using tables with more than 255 columns – here’s one I discovered partly because I was thinking about a client requirement, partly because I had a vague memory of a change in behaviour in 12c and Stefan Koehler pointed me to a blog note by Sayan Malakshinov when I asked the Oak Table if anyone remembered seeing the relevant note. Enough of the roundabout route, I’m going to start with a bit of code to create a table, stick a row in it, then update that row:

255 columns

This is one of my “black hole” articles – I drafted it six months ago, but forgot to publish it.

Undo Understood

It’s hard to understand all the ramifications of Oracle’s undo handling, and it’s not hard to find cases where the resulting effects are very confusing. In a recent post on the OTN database forum resulted in one response insisting that the OP was obviously updating a table with frequent commits from one session while querying it from another thereby generating a large number of undo reads in the querying session.

Join Elimination

A question has just appeared on OTN describing a problem where code that works in 11g doesn’t work in 12c (exact versions not specified). The code in question is a C-based wrapper for some SQL, and the problem is a buffer overflow problem. The query supplied is as follows:


select T1.C1 from T1, T2 where T1.C1 = T2.D1;

The problem is that this works in 11g where the receiving (C) variable is declared as

char myBuffer [31];

but it doesn’t work in 12c unless the receiving variable is declared as: