This post is about using using hashicorp vault and ansible.
Everyone that has used ansible knows you sometimes can’t get around storing secrets (passwords mostly) in an ansible playbook because for example an installer requires them. Or even simpler, because authentication must be done via a username and password.
The ansible embedded solution is to use ansible vault. To me, ansible vault is a solution to the problem of storing plain secrets in an ansible playbook by obfuscating them. However, these secrets are static, and still require the actual decryption key on runtime. In a lot of cases, it is delivered by putting the password in a file.
This blogpost is about using ansible vault. Vault is a way to encrypt sensitive information in ansible scripts by encrypting it. The motivation for this blogpost is the lack of a description that makes sense to me of what the possibilities are for using vault, and how to use the vault options in playbooks.
The basic way ansible vault works, is that when ansible-playbook reads a yaml file, it encounters $ANSIBLE_VAULT;1.1;AES256 indicating ansible vault is used to encrypt the directly following lines, it will use a password to decrypt it, and then uses the decrypted version in memory only. This way secrets can be hidden from being visible. Obviously, the password will allow decrypting it, and the password must be used in order for ansible-playbook to decrypt it.
The original use of vault is to encrypt an entire yaml file. As of Ansible version 2.3, ansible allows the encryption of single values in a yaml file.
There are many situations where you want to use a very specific configuration of the Oracle database, for example when a client has an issue and is still on EL5, or gets disk errors on a filesystem that is ext3, or is using ASM and gets weird IO patterns. Other examples are: you want to test the newest PSU to see if responds differently to an issue you are working on, or you want to test a combination of the Oracle database version 11.2.0.3 and grid infrastructure 12.1.0.2.
Of course you can just go and install a virtual machine, install all the different bits and pieces. Doing so manually kills vast amounts of time. By doing that, you will end up with a lot of virtual machines, for which at a certain point in time you have to make a decision to remove some of these.
This is a short blogpost meant as both an introduction for those who don’t know Ara and a guide on how to install Ara.
Ara means ‘Ansible Runtime Analysis’, and is a tool for storing metadata that Ansible uses during execution. It is very valuable, because it takes a lot of guesswork and entering debug statements in your playbook away.
This is a guide on how to install Ara on Oracle Linux 7. I assume ansible is already installed. If want to start fresh, add EPEL and yum install ansible and git. That’s all you need to begin!
First, become root and install ara using a playbook:
This blogpost is about how to install the semaphore user-interface for running ansible. Ansible is an automation language for automating IT infrastructures. It consists of command-line executables (ansible, ansible-playbook for example) that can run a single task using a module (using the ansible executable), or can run multiple tasks using multiple modules in order to perform more complex setup requirements (using the ansible-playbook executable). The downside of running IT tasks via the command-line is that there is no logging by default, unless someone decides to save the standard out to a file, which, if multiple people start doing that by hand will probably lead to a huge collection of text files which are hard to navigate. Also, when tasks are run via a common place, it’s an all or nothing situation: everybody has access to all the scripts, or to nothing.
This is a blogpost about how I setup my test virtual machines. The seasoned sysadmin and DBA will notice that the techniques used here are perfectly usable for real production environments. The most important thing is there is no need to download or stage any software for installing the virtual machine, everything is downloaded when needed during installation. Obviously this works best when you have got reasonable bandwidth available for connecting to the internet.
The main infrastructure software components of this setup are:
– Virtualbox as the virtualisation software.
– Ansible as the configuration and management engine.
– Vagrant as the virtualisation manager.
There are couple of automation tools, which can be used for that task like Puppet, Chef or Ansible to name a few. The latter one - Ansible - is my favorite, cause in my opinion it has shortest learning curve and also doesn't require any agents on the remote servers.
There are couple of automation tools, which can be used for that task like Puppet, Chef or Ansible to name a few. The latter one - Ansible - is my favorite, cause in my opinion it has shortest learning curve and also doesn't require any agents on the remote servers.
Recent comments
1 year 45 weeks ago
2 years 5 weeks ago
2 years 9 weeks ago
2 years 10 weeks ago
2 years 14 weeks ago
2 years 36 weeks ago
3 years 4 weeks ago
3 years 33 weeks ago
4 years 18 weeks ago
4 years 18 weeks ago